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Abstract: Oncolytic virotherapy is currently under investigation in phase I–III clinical trials 

for approval as a new cancer treatment. Oncolytic viruses (OVs) selectively infect, replicate 

in, and kill tumor cells. For a long time, the therapeutic efficacy was thought to depend on the 

direct viral oncolysis (virocentric view). The host immune system was considered as a brake 

that impaired virus delivery and spread. Attention was paid primarily to approaches enhancing 

virus tumor selectivity and cytotoxicity and/or that limited antiviral responses. Thinking has 

changed over the past few years with the discovery that OV therapy was also inducing indirect 

oncolysis mechanisms. Among them, induction of an antitumor immunity following OV injection 

appeared to be a key factor for an efficient therapeutic activity (immunocentric view). Indeed, 

tumor-specific immune cells persist post-therapy and can search and destroy any tumor cells that 

escape the OVs, and thus immune memory may prevent relapse of the disease. Various strategies, 

which are summarized in this manuscript, have been developed to enhance the efficacy of OV 

therapy with a focus on its immunotherapeutic aspects. These include genetic engineering and 

combination with existing cancer treatments. Several are currently being evaluated in human 

patients and already display promising efficacy.
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strategies

Cancer and the immune system
In 2006, the World Health Organization reported cancer as the second cause of 

death in developed countries and the third cause worldwide.1 Numerous risk factors 

responsible for cancer development have been characterized, and two-thirds appeared 

to be associated with lifestyle. In high-income countries, smoking, alcohol use, 

and obesity represent the main risk factors.2 Age aside, other factors include an 

unhealthy diet and lack of exercise, chronic infection (eg, hepatitis B virus [HBV], 

hepatitis C virus, human papillomavirus [HPV], Helicobacter pylori), or exposure to 

carcinogens: natural (eg, aflatoxin B1), chemical (eg, benzene, arsenic), radionuclide, or 

radiation (eg, ultraviolet). Some inherited genetic factors can also predispose to cancer 

development (eg, mutations in BRCA1 and BRCA2 genes for breast cancer).3 Although 

treatments for the disease have significantly improved, conventional therapies still 

have limited effects against many forms of neoplasm. As a consequence, projections 

to 2030 are pessimistic, with an increased impact of cancers on global mortality.4 

Thus, reducing cancer-associated mortality will mean behavioral changes together 

with improvement and expansion of therapeutic strategies.
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Carcinogenesis
Upon exposure to the cancer risk factors mentioned, 

carcinogenesis takes decades in adults and occurs in three con-

secutive steps: initiation, promotion, and progression. Tumor 

initiation results from genetic and/or epigenetic mutations in 

growth-regulatory genes encoding tumor suppressors (eg, p53, 

Rb) or proto-oncogenes (eg, Ras, Myc). Tumor promotion 

consists of expansion of some initiated cells that have acquired 

a growth advantage over noninitiated cells. During replication, 

cancer cells accumulate mutations affecting genes involved in 

various cellular functions such as gene regulation (eg, TP53, 

RB1, JUN, MYC), DNA repair (eg, BRCA1, ATM), DNA 

replication (eg, hTERT, CDC6), chromosome segregation 

(eg, BUB1B), cell cycle checkpoints (eg, TP53, CCND1, 

CDKN2), viability (eg, TP53, BCL2, PTEN), or intra-/inter-/

extracellular signalling components (eg, RAS, APC, AKT, 

EGFR, HER2, CDH1, CTNNB1).5–9 Tumor progression refers 

to the  stepwise transformation of a benign tumor to a neoplasm 

and to malignancy.  Hallmarks of tumor malignancy were sum-

marized by Hanahan and Weinberg10 as follows: (1)  sustaining 

proliferative signalling, (2)  evading growth suppressors, 

(3) enabling replicative immortality, (4) resisting cell death, 

(5) inducing angiogenesis, and (6) activating invasion and 

metastasis.

Cancer immunoediting
Intrinsic and extrinsic tumor suppressor mechanisms help 

prevent or slow down carcinogenesis all through life. Intrinsic 

tumor suppressor mechanisms consist of DNA repair and 

the death of mutated cells through apoptosis or senescence. 

After cellular transformation occurs and intrinsic tumor 

suppression fails, extrinsic tumor suppressor mechanisms 

are engaged. Extrinsic tumor suppressor mechanisms refer 

to the involvement of the immune system in eliminating 

tumor cells or preventing their outgrowth. In 2001, Schreiber 

et al observed that the immune system not only protects 

the host against tumor formation but also shapes tumor 

 immunogenicity.11 This notion led to revision of the cancer 

immunosurveillance hypothesis by introducing the concept 

of cancer immunoediting.12 They postulate that cancer 

 immunoediting proceeds sequentially through three distinct 

phases termed elimination, equilibrium, and escape.

The elimination phase would correspond to cancer 

immunosurveillance in which innate (natural killer cells 

[NKs], dendritic cells [DCs], macrophages) and adaptive 

(T cells and NK T cells) immune systems are involved in 

detecting and destroying developing tumors. Mechanisms 

involved in tumor recognition by the immune cells are not 

fully  understood. Induction of type I interferons (IFNs) 

 during early steps of tumor development, release of different 

damage-associated molecular patterns (DAMPs) from dying 

tumor cells or damaged tissues (eg, HMGB1), and  expression 

of stress ligands (eg, NKG2D ligands MICA/B) on the 

 surface of tumor cells have been described. Additionally, 

effective cancer immunosurveillance requires the expres-

sion of tumor antigens that are able to induce expansion of 

effector CD4+ and CD8+ T cells.13,14

A limited number of tumor cell variants can survive 

elimination and enter the equilibrium phase. Functionally, 

these surviving tumor cells appear dormant. Disruption of 

crosstalk between growth factor and adhesion signalling 

during the elimination phase is, in part, responsible for this 

state.15 During the equilibrium phase, which may last for the 

lifetime of the host, the adaptive immune system (T cells, 

interleukin [IL]-12, and IFN-γ), but not innate immunity, 

prevents tumor outgrowth but also edits cancer immunoge-

nicity. Indeed, by eliminating immunogenic tumor cells, T 

cells exert a selective pressure on occult tumor cell popula-

tions and may favor the emergence of variants able to escape 

immunity.13,14

Tumor cell variants that enter the escape phase evolve 

 different processes to elude or inhibit immune  recognition 

and/or destruction (Figure 1A). First, they are poorly 

 immunogenic and no longer recognized by adaptive  immunity 

due to  antigen loss or defects in antigen processing or 

 presentation (eg, decreased major histocompatibility complex 

[MHC] class I expression). Second, they become resistant 

to immune cytotoxic effect by overexpression of antiapop-

totic molecules (eg, Bcl-2, Bcl-xL), persistent  activation 

of  pro-oncogenic transcription  factors (eg, STAT3), or 

 expression of surface molecules  inducing cytotoxic 

T lymphocyte (CTL) killing (eg, FasL, PD-L1). Third, they 

can  generate an  immunosuppressive  microenvironment by 

 secreting cytokines that inhibit effector immune cell functions 

(eg, transforming growth factor [TGF]-β, IL-10, galectin-1, 

indoleamine 2,3-dioxygenase) or by recruiting effector cells 

of  immunosuppression like regulatory T cells (Tregs) and 

myeloid-derived suppressor cells (MDSCs). MDSCs can 

block T-cell function by secreting TGF-β,  arginase 1, and 

nitric oxide synthase. Tregs can inhibit effector T cells by 

expressing PD-L1 and CTLA-4 on their surface or  secreting 

TGF-β and IL-10. Over time, these selected tumor cell 

variants acquire the capacity to grow, leading to clinically 

apparent disease.13,14
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Cancer immunotherapy
Together with surgery, common cancer treatments  consist 

of radiotherapy, chemotherapy, and immunotherapy. 

Alternatively, hormone therapy and tissue transplantation 

can be used to treat some neoplasms such as breast cancer 

(blocking estrogen synthesis or binding to its receptor) and 

lymphoma (bone marrow transplant).16,17 Radiotherapy and 

chemotherapy induce tumor cytotoxicity by breaking DNA 

(X-rays), blocking DNA replication (eg, cisplatin) or its 

transcription (eg, histone deacetylase inhibitors [HDACis]), 

and/or blocking mitosis (eg, paclitaxel). Immunotherapy 

mainly consists of stimulating the extrinsic tumor suppressor 

mechanisms by increasing the quality and/or quantity of 

immune effector cells, increasing tumor immunogenicity, or 

decreasing cancer-induced immunosuppressive mechanisms. 

Multiple immunotherapeutic strategies are being explored 

(for review, see Dougan and Dranoff18).

Passive immunotherapy
First, administration of monoclonal antibodies (mAbs) 

is a potent cancer treatment. Depending on the nature of 

the target (soluble or membrane-bound), binding of mAbs 

results in steric inhibition and neutralization,  modulation of 

 downstream signalling pathways, complement activation, 
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Figure 1 Tumor immunotolerance (A). Tumor cells evolve different processes to elude or inhibit immune recognition and/or destruction. (1,2) First, they are poorly 
immunogenic and no longer recognized by adaptive immunity due to antigen loss or defects in tumor-associated antigen (TAA) processing or presentation. Second, they 
become resistant to immune cytotoxic effect by overexpression of antiapoptotic molecules (eg, Bcl-2, Bcl-xL) and persistent activation of pro-oncogenic transcription factors 
(eg, STAT3). Third, they can generate an immunosuppressive microenvironment by (3) expressing surface molecules that induce inactivation/killing of cytotoxic T lymphocytes 
(CTLs) (eg, FasL, PD-L1), (4) by secreting cytokines that inhibit effector immune cell functions (eg, transforming growth factor [TGF]-β, interleukin [IL]-10, galectin-1, 
indoleamine 2,3-dioxygenase), or (5) by recruiting effector cells of immunosuppression-like regulatory T cells (Tregs). (6) Tregs can inhibit effector T cells by expressing 
PD-L1 and CTLA-4 on their surface or secreting TGF-β and IL-10. (B) Oncolytic virotherapy as/in cancer immunotherapy. (1) Tumor cell infection by oncolytic viruses (OVs) 
leads to cell death and release of progeny virions that are able to infect adjacent tumor cells. Additionally, OV infection produces and releases immunostimulatory molecules 
that contribute to break immunotolerance and to reactivate antitumor immunity. (2, 3) First, OV replication produces viral pathogen-associated molecular patterns (PAMPs) 
including viral antigens that can be presented onto the surface of infected tumor cells or released in the tumor microenvironment. (3) Second, stress induced by OV infection 
also releases cytokines and chemokines, damage-associated molecular patterns (DAMPs) (eg, HMGB1, uric acid, heat-shock proteins), and TAA. (4) Insertion of transgenes 
expressing TAA, cytokines/chemokines, or costimulatory molecules (eg, CD80) into OVs can improve stimulation of antitumor immunity. (5) All these immunostimulatory 
molecules contribute to dendritic cell (DC) maturation. (6, 7) After taking up released TAAs, mature DCs can present them to cognate T cells, including CTLs, which will 
undergo proliferation. (8) TAA-specific CTLs can then migrate to the tumor site and kill tumor cells that have not been infected by OVs. DC activation following OV therapy 
has also been described to stimulate natural killer cell-mediated antitumor activity.179,191,200 OV-induced antitumor immunity can be enhanced by combination with other 
cancer treatments such as cell therapies like (9) adoptive transfer of TAA-specific T cells and (10) DC-based vaccines or immunomodulatory drugs like (11) cyclophosphamide 
(CPA), which can both deplete Tregs and promote T-cell activation. 
Abbreviation: MHC-I, major histocompatibility complex class I.
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and/or induction of the antibody-dependent cellular 

cytotoxicity. Twelve mAbs are clinically approved for treat-

ment of various cancers. Nine are targeting tumor-associated 

surface proteins. Most of these targets are markers of 

hematologic tumors. Rituximab, ibritumomab tiuxetan, 

tositumomab, and ofatumumab bind to CD20 (associated 

to non-Hodgkin’s lymphoma and chronic lymphocytic 

leukemia [CLL]), alemtuzumab binds to CD52 (CLL), and 

gemtuzumab ozogamicin binds to CD33 (acute myeloid 

leukemia). Trastuzumab, cetuximab, and panitumumab bind 

to epidermal growth factor receptor (EGFR) family members 

expressed on solid tumors.18,19 The last three mAbs approved 

do not directly target malignant cells. Bevacizumab binds to 

soluble vascular endothelial growth factor (VEGF), inhibiting 

tumor angiogenesis, while denosumab binds to RANKL, thus 

inhibiting osteoclast-mediated bone destruction and prevent-

ing skeletal-related events in patients with bone metastases. 

Finally, ipilimumab binds to CTLA-4 expressed on Tregs 

and CTL and blocks its inhibitory activity, thereby sustaining 

immune responses.18,20,21

A second strategy for cancer immunotherapy consists 

of administering cytokines (eg, IL-2, IFN-α, granulocyte-

macrophage colony-stimulating factor [GM-CSF]), adjuvants 

(eg, BCG, imiquimod), or immunomodulating agents (eg, 

thalidomide) to boost patient immune systems. Cytokines are 

also often used as adjuvants. IL-2 induces the proliferation 

of responsive T cells. GM-CSF stimulates the production of 

granulocytes and monocytes and promotes DC recruitment 

and activation. IFN-α shows pleiotropic effects. It increases 

tumor immunogenicity by upregulating genes encoding 

MHC-I and some tumor antigens, has antiangiogenic proper-

ties, promotes T- and B-cell activity, stimulates macrophages 

and DCs, and upregulates Fc receptors.22–27

Third, adoptive T-cell transfer strategy involves ex vivo 

identification and expansion of autologous or allogeneic 

tumor-specific lymphocytes that are then infused into cancer 

patients. So far, this approach is the most effective treat-

ment for patients with metastatic melanoma. It can mediate 

objective cancer regression in approximately 50% of patients 

with metastatic melanoma refractory to all other treatments. 

Lymphocytes can be extracted from blood, tumor-draining 

lymph nodes, malignant effusions, or, if possible, from the 

tumor (tumor-infiltrating lymphocytes [TILs]) of patients. 

Their antitumor activity arises either naturally or after genetic 

engineering (eg, expression of tumor antigen-specific T-cell 

receptors). Ex vivo expansion (using growth  factors such 

as IL-2) allows administration of 10–100 billion tumor-

specific lymphocytes to patients. In vivo injection usually 

follows a lymphodepleting  regimen (eg, body  irradiation 

or  cyclophosphamide/fludarabine  chemotherapy) and 

often comes along with growth factors (eg, IL-2) or vac-

cines to stimulate survival and proliferation of infused 

lymphocytes.28,29

Active immunotherapy (cancer vaccines)
All strategies mentioned previously depend on supplying the 

immune system with infused short-lived molecules or cells. 

Because the immune system is not directly engaged to fight 

the tumor (passive immunity), infusions must be repeated 

and treatment efficacy may not be optimal. In the last decade, 

cancer vaccine strategies have expanded. They aim at priming 

an endogenous antitumor response to generate active  immunity. 

Because some cancers are caused by chronic infections, 

therapies that clear or prevent infection of the corresponding 

agent are defined as prophylactic cancer vaccines (eg, HBV 

and HPV16/18 vaccines against liver and cervical cancers, 

respectively, or antibiotics versus H. pylori against stomach 

cancer). Their efficacy relies on priming an immune response 

specific to foreign antigens expressed by the infectious agent. 

The development of therapeutic cancer vaccines is much 

more challenging. Indeed, their efficacy depends on priming 

a response against an established tumor mediating immune 

tolerance. Many approaches for therapeutic cancer vaccines 

have been attempted with limited efficacy so far. Antigen-

specific, idiotype-specific, DC-based, and whole tumor cell-

based vaccines currently figure among the most promising.

DCs are the most potent professional antigen-presenting 

cells (APCs). They play a critical role in priming and regulat-

ing T- and B-cell responses. For this reason, their enrollment 

appears to be the key for the success of any vaccine approach. 

Immature DCs (iDCs) patrol in tissues looking for dying 

cells or pathogens. They undergo maturation once exposed to 

inflammatory signals (eg, TNF-α, IL-1β, IL-6), DAMPs (eg, 

HMGB1, heat-shock proteins [HSPs], nucleic acids), and/or 

pathogen-associated molecular patterns (PAMPs) (eg, LPS, 

dsRNA). Mature DCs have improved antigen-presenting 

abilities and increased expression of T-cell costimulatory 

molecules (CD80, CD83, CD86, CD40). They also acquire 

migratory potential by upregulating the chemotactic recep-

tor CCR7, which will bring them to a lymph node or to 

the spleen. There, mature DCs will encounter and present 

antigen on MHC-II to cognate CD4+ T cells. Interaction 

between CD40 on the DCs and CD40L, expressed on the 

antigen-activated CD4+ T cell, induces the final maturation 

step of DCs, known as licensing. Licensed DCs upregulate 

additional cell surface products, such as OX40L and 4-1BBL, 
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and present antigen on MHC-I to cognate CD8+ T cells. They 

also secrete IL-12 and stimulate survival and proliferation 

of antigen-activated CD8+ and CD4+ T cells through the 

crosslinking of 4-1BBL with 4-1BB expressed on activated 

CD8+ T cells, and of OX40L with OX40 expressed on acti-

vated CD4+ T cells.30

Antigen-specific vaccines are based on the delivery 

of tumor antigens. Antigens are delivered as recombinant 

proteins31,32 or immunogenic peptides,33 often in combination 

with adjuvant (eg, CpG) or using naked plasmid DNA,34 

bacterial vectors (eg, Salmonella typhimurium),35 or viral 

vectors (eg, recombinant poxviruses).36 In vivo, tumor 

antigens can then be taken up and presented by APCs and elicit 

cellular and humoural antitumor responses. Tumor antigens 

can be shared by both normal and tumor cells and described 

as tumor-associated antigens (TAAs), or expressed only on 

tumor cells and defined as tumor-specific antigens (TSAs). 

These antigens can be aberrantly expressed differentiation 

or embryonic markers, overexpressed or mutated cellular 

proteins, or viral proteins (eg, retrovirus, HBV). A list 

of characterized tumor antigens with their immunogenic 

epitopes is available at http://www.cancerimmunity.org/

peptidedatabase/Tcellepitopes.htm.37 A wide range of 

neoplasms displays aberrant expression of differentiation 

factors that mainly belong to the cancer-testis antigen 

(CTA) family. Two CTA vaccines, against MAGE-A3 and 

NY-ESO-1 antigens, are being evaluated clinically.38 Results 

from numerous clinical trials in melanoma and nonsmall-cell 

lung cancer patients are encouraging, revealing their ability 

to elicit antitumor B- and T-cell responses.31,36,39–42

Idiotype-specific vaccines are based on immunization 

of patients against their own tumor idiotype. This type of 

vaccination is being improved for treating various cancers and, 

more particularly, mature B-cell neoplasms.43–45 Each plasma B 

cell produces one single kind of antibody. Antibodies produced 

are either secreted or anchored to the plasma membrane 

functioning as the B-cell receptor. The variable regions of 

the heavy and light chains of an immunoglobulin contain 

a unique set of antigenic determinants (idiotopes) called 

idiotypes. Idiotypes have the characteristics of tumor antigens, 

in this case the immunoglobulins expressed at the surface of 

malignant B cells, and can then be targeted with anti-idiotype 

antibodies. Idiotype-specific vaccines often include anti-

idiotype antibodies together with a carrier (eg, keyhole-limpet 

hemocyanin) and an adjuvant (eg, GM-CSF) to overcome 

immune tolerance. Several idiotype-specific vaccines have 

reached phase III clinical trials for the treatment of follicular 

lymphomas with limited results so far.43

DC-based vaccines consist of the autologous transfer of 

DCs loaded ex vivo with tumor antigen(s). DCs are often 

generated from circulating monocytes through culture in 

serum-free medium with GM-CSF in combination with 

IL-4 or IL-15.46 These iDCs are then loaded with TAA/TSA. 

Antigen(s) can be provided in many forms: (1) exogenously 

as peptides, protein, tumor lysate, complexed with antibody, 

or by fusing DCs with tumor cells (using polyethylene glycol 

or electrical fields) or (2) endogenously by transfection or 

transduction (eg, using adenoviral vector) of nucleic acids 

encoding a TAA/TSA. Loaded iDCs can be infused into a 

patient’s tumor together with adjuvant (eg, TLR7 agonist 

imiquimod) to stimulate their maturation in situ or, more 

often, delivered subcutaneously or intravenously.47,48 These 

loaded iDCs can also be matured ex vivo prior to infusion. 

Protocols often involve their incubation with a cocktail of 

inflammatory cytokines (eg, TNF-α, IL-1β, IFN-α, IFN-γ) 

together with activators of the TLR signalling (eg, polyI:C/

TLR3, LPS/TLR4, imiquimod/TLR7, CpG/TLR9).30,49 In 

addition, DCs can be modified ex vivo to express chemokines, 

cytokines, and costimulatory molecules to provide a more 

robust and persistent anticancer immunity in vivo (for review, 

see Boudreau et al50). Sipuleucel-T is a DC-based vaccine 

applied for treating patients with hormone-refractory prostate 

cancer. The vaccine is prepared from isolated DC precursors 

matured by incubation with a fusion protein consisting of 

GM-CSF and the cancer prostate antigen PAP. In April 2010, 

Sipuleucel-T became the first therapeutic cancer vaccine 

approved by the Food and Drug Administration, opening a 

new era for cancer vaccines.51,52

Tumor cell-based vaccines are made from autologous 

or allogeneic tumor cells removed during surgery and 

 manipulated ex vivo. These cells are expanded in culture, then 

irradiated or lysed before their in vivo infusion, often together 

with adjuvants. To improve the vaccine potency, tumor cells 

can also be genetically modified to express cytokines (eg, GM-

CSF), growth factors (eg, EGF), human leucocyte antigen, or 

costimulatory molecules (eg, CD80). Compared with other 

cancer vaccine approaches, whole tumor cell  vaccines are not 

restricted to a limited number of TAAs/TSAs. Patients’ APCs 

are virtually able to take up the full pattern of tumor antigens 

(including undiscovered ones) and present it to T cells. As a 

consequence, the immune response primed is highly specific 

to the patient’s tumor. However, induction of autoimmunity 

is more likely to occur. Several tumor cell vaccines have 

already reached phase III clinical trials with promising results 

(eg, autologous whole cell vaccine  OncoVax given with BCG 

adjuvant for colon cancer).53
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Immunotherapy and combination 
strategies
As mentioned, radio-, chemo-, and immunotherapies have 

limited clinical efficacy for many cancer types. Optimal 

cancer treatment would imply acting simultaneously on 

multiple “fronts” such as viability/growth/immunogenicity 

of tumor cells, quality/quantity of immune effector cells, 

or factors responsible for tumor immunosuppression, 

angiogenesis, and evasion. Thus, combining various 

therapeutic approaches that act separately or cooperatively 

on these “fronts” must be considered. Combination of passive 

immunotherapy with radiotherapy (ibritumomab tiuxetan, 

tositumomab), chemotherapy (gemtuzumab ozogamicin), 

or biotherapy (denileukin diftitox) as immunoconjugates 

has been approved for over a decade.18 Most of these 

immunoconjugates induce both direct and immune-

mediated tumor cytotoxicity. Combining immunotherapy 

with chemotherapy can appear antagonistic at first sight. 

Indeed, chemotherapy induces not only tumor cell apoptosis, 

which has been regarded as nonimmunogenic or even 

tolerogenic, but also lymphodepletion. However, several 

studies provide mounting evidence that, depending on the 

dose and timing of administration, some chemotherapeutic 

agents such as cyclophosphamide (CPA) can improve 

antitumor immunity.54,55 CPA showed pleiotropic effect that 

covers most of the “fronts”: (1) direct tumor cytotoxicity, 

(2) depletion of immunosuppressive Tregs, (3) activation 

and proliferation of T and B cells, (4) promote infiltration 

of tumor-specific lymphocytes inside the tumor, (5) increase 

number and activation status of myeloid DCs, and 

(6) promote emergence of tumor-infiltrating DCs secreting 

more IL-12 and less IL-10.54,56,57 Combining several 

immunotherapeutic approaches is also very promising. 

So far, this mostly implies coadministration of well-

characterized adjuvants (eg, IL-2, GM-CSF, BCG) together 

with tumor-specific mAbs, adoptively transferred cells, or 

cancer vaccines to stimulate the recruitment and activity of 

immune effector cells. New adjuvants like TLR9 agonists 

and α-galactosylceramide are also being tested.18 Approved 

mAbs such as ipilimumab and bevacizumab reducing, 

respectively, immunosuppression and angiogenesis may 

also become common additives. In the same perspective, 

new mAbs are currently being evaluated. They block 

immunosuppressive cytokines (eg, anti-IL-10, IL-13, TGF-β, 

or VEGF) or immune inhibitory signals in lymphocytes 

(eg, anti-PD-1) or their ligand (eg, anti-PD-L1), or act as 

agonist of immunostimulatory receptors (eg, anti-CD40, 

4-1BB, OX34).18 Other immunotherapeutic combinations 

are being evaluated to improve efficacy of cancer vaccines, 

such as (1) combining cancer vaccine with mAbs targeting 

the same TAAs/TSAs,58,59 (2) sequential administration 

of cancer vaccines expressing/carrying the same TAAs/

TSAs (prime-boost strategy),60–64 or (3) targeting different 

TAAs/TSAs simultaneously.65,66 Finally, combining cancer 

immunotherapy with oncolytic virotherapy also raises a lot 

of hope and will be discussed in this review.

Oncolytic viruses
Oncolytic virotherapy consists of administering viruses that 

selectively infect, replicate in, and kill tumor cells with no 

or limited impact on normal tissues. Viral oncolytic proper-

ties have been reported since the middle of the 19th century, 

before the actual discovery of viruses. At that time, some 

patients with hematologic malignancy showed transient 

remission after naturally occurring infections.67 In 1949, 

Moore68,69 demonstrated selective destruction of murine 

tumors by the Russian Far East encephalitis virus, opening 

the field of oncolytic virotherapy. After a peak of interest in 

the 1950s–60s with the first clinical trials, the field was nearly 

abandoned. Extended knowledge in virology and molecular 

biology led to its rebirth 20 years ago with the first human 

clinical trial using a recombinant oncolytic virus (OV).67,70 

Since then, several viruses showing oncolytic ability have 

been identified and engaged in preclinical and clinical  studies 

(Table 1). The first OV was approved in China in 2005 for 

treating nasopharyngeal cancer (in combination with chemo-

therapy), and several are undergoing phase III clinical trials 

in the US (Table 1).71,72

Tumor selectivity
OVs are human (eg, herpes simplex virus [HSV],  adenovirus 

[Ad], measles virus [MV]) or veterinary (eg, vesicular 

 stomatitis virus [VSV], Newcastle disease virus [NDV], 

myxomavirus [MYXV]) viruses engineered to have, or 

naturally having, little pathology in humans. Also, their 

oncotropism can be inherent or acquired after genetic 

engineering.

Inherent oncotropism refers to OVs that are naturally 

able to infect and replicate in tumor cells. First, it implies 

that tumor cells express the surface receptor(s) required for 

OV binding/entry. Expression of these surface receptors 

can be aspecific (eg, CAR for Ad, CD46/CD150 for MV) or 

specific to malignant phenotype (eg, overexpression of the 

high-affinity laminin receptor used by the Sindbis virus,112,113 
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Table 1 List of candidates for oncolytic virotherapy identified during the last 20 years

Genome Family Genus Strain(s) Evaluation stagea/patented OV  
(cancer treated)

DNA Adenoviridae Mastadenovirus Human adenovirus C serotype 5 Phase I–II/ONYX-015 (HNSCC, oropharyngeal  
cancers – Clinicaltrials.gov identifierb:  
NCT00006106); Approved in China/H101  
Oncorine (nasopharyngeal cancer)72,73

Human adenovirus C serotype 6 Experimental74

Human adenovirus B serotype 3 Experimental75

Human adenovirus B serotype 11 Experimental76

Herpesviridae Simplexvirus Herpes simplex virus 1 Phase III/OncoVEXGM-CSF (melanoma – Clinicaltrials. 
gov identifier: NCT00769704)71,77

Herpes simplex virus 2 Preclinical (breast cancer, neuroblastoma)78,79

Varicellovirus Bovine herpesvirus 1 Experimental80

Suid herpesvirus 1 Preclinical (bladder cancer)81

Rhadinovirus Bovine herpesvirus 4 Preclinical (glioma)82

Herpesvirus saimiri Experimental83

Parvoviridae Parvovirus H-1PV Phase I–II/ParvOryx (GBM – Clinicaltrials.gov  
identifier: NCT01301430)

Minute virus of mice Experimental84

Poxviridae Orthopoxvirus Vaccinia virus Phase II/JX-594 (HCC – Clinicaltrials.gov identifier: 
NCT00554372)85

Raccoonpox virus Preclinical (colon carcinoma, glioma)86

Leporipoxvirus Myxomavirus Preclinical (glioma)87

RNA Coronaviridae Coronavirus Feline infectious peritonitis virus Experimental88

Murine hepatitis virus Experimental89

Orthomyxoviridae Influenzavirus Influenza A Experimental90

Paramyxoviridae Avulavirus Newcastle disease virus Phase I–II (metastatic cancers, GBM – Clinicaltrials. 
gov identifiers: NCT00348842, NCT01174537)

Morbillivirus Measles virus Phase I (ovarian cancer, multiple myeloma, plasma  
cell neoplasm – Clinicaltrials.gov identifiers:  
NCT00408590, NCT00450814)91

Respirovirus Sendai virus Preclinical (GBM)92

Rubululavirus Mumps virus Experimental93

Picornaviridae Cardiovirus Encephalomyocarditis virus Experimental94,95

Enterovirus Coxsackievirus A21 Phase I (melanoma, HNSCC – Clinicaltrials.gov  
identifiers: NCT00832559, NCT00438009)

Coxsackievirus A13, A15, A18 Experimental96

Poliovirus Preclinical (neuroblastoma)97

Echovirus 1 Experimental98–100

Bovine enterovirus Experimental101

Senecavirus Seneca valley virus Phase I/NTX-10 (advanced solid tumors with  
neuroendocrine features – Clinicaltrials.gov  
identifier: NCT00314925)

Reoviridae Orbivirus Bluetongue virus-10 Experimental102

Orthoreovirus Reovirus serotype 3 Phase III/Reolysin (HNSCC – Clinicaltrials.gov  
identifier: NCT01166542)71

Retroviridae Gammaretrovirus (Moloney) Murine leukemia virus Experimental103,104

Spumavirus Foamy virus Experimental105

Rhabdoviridae Vesiculovirus Vesicular stomatitis virus Phase I (HCC)106

Maraba virus, Farmington virus Preclinical studies ongoing in our group and in  
Stojdl’s group (melanoma, glioma)107

Bahia Grande virus, Carajas virus,  
Muir Springs virus, Tibrogargan virus

Experimental107

Togaviridae Alphavirus Semliki forest virus Preclinical (ovarian cancer)108,109

Sindbis virus Experimental110,111

Notes: aExperimental stage = in vitro/in immunodeficient animal; preclinical stage = in immunocompetent animal; clinical stage (phase I, II, or III) = in human; bongoing clinical 
trials involving OVs are detailed in http://clinicaltrials.gov/; some corresponding identifier numbers are included in the table. 
Abbreviations: GBM, glioblastoma multiforme; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; OV, oncolytic virus.
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overexpression of ICAM-1 and DAF used by  Coxsackievirus 

A21).114 Second, it implies that permissiveness of OV replica-

tion depends on factors associated with neoplasia. These fac-

tors include defective IFN response (eg, VSV, MYXV),115,116 

aberrant cell cycle control (eg, parvovirus),117 resistance 

to apoptosis (eg, NDV),118 constitutive activation of Ras 

(eg, reovirus)119 or Akt (eg, MYXV),120 or, again, alteration 

of the extracellular matrix (eg, HSV-1).121

In most cases, viral oncotropism is genetically  engineered. 

Genetic modifications aim at improving virus targeting to 

tumor cells, reducing virulence in normal tissues, and/or 

increasing dependency of OV genome expression/replication 

to the malignant phenotype.

Virus retargeting mainly involves fusing the virus attach-

ment protein (eg, Ad fibre knob, MV hemagglutinin/H 

protein, HSV glycoprotein C) to a single-chain antibody or 

a peptide known to bind a tumor-associated receptor.122–128 

The receptor targeted can be overexpressed in a wide range 

of tumors (eg, EGFR, integrin αvβ6, uPAR)122,126,128 or limited 

to particular cancers (eg, EGFRvIII mutant/glioma, HER2/

breast cancer, PSMA/prostate cancer).123,125,127,129 Another 

way to improve OV targeting to tumor cells consists of ren-

dering their binding/entry dependent on proteases secreted 

in the tumor microenvironment (eg, MMP, uPA).92,130,131 

For example, the F protein of the Sendai virus needs to be 

cleaved by trypsin to allow fusion between viral and cellular 

membranes. Replacing the trypsin cleavage site by one of the 

uPA proteases, secreted in the extracellular matrix of solid 

tumors, limits virus infection to tumor tissue.92,130

Oncotropism can also be generated or improved by mutat-

ing viral genes required for virus survival in normal cells 

but not in malignant cells. For example, deletion/modifica-

tion of the HSV genes encoding the neurovirulence factor 

ICP34.5 and the nucleotide reductase ICP6 abolishes its 

natural neurotropism without affecting its oncotropism.132,133 

Deletion of E1A and E1B genes results in a restriction of Ad 

replication to cells with defects in Rb and p53-controlled 

tumor suppressor pathways. This defect is characteristic of 

well over 50% of tumor cells.134,135 Deletion of the vaccinia 

virus (VV) genes encoding the thymidine kinase (TK) and 

the vaccinia growth factor ensures that virus replication is 

limited to rapidly dividing cells.136 Oncotropism can also be 

ensured or improved by inserting regulatory elements in viral 

genes. These elements can be promoter sequence from active 

tumor genes (eg, hTERT promoter),137–140 5′UTR sequence 

recruiting tumor-associated translation factors (eg, eIF4E 

overexpressed in various cancers),141 or 3′UTR sequence 

complementary to cellular miRNA (eg, let-7a miRNA 

 downregulated in many tumors).142–145

Tumor killing
Tumor killing by OV can result directly from the viral cycle. 

Cell death can be the consequence of a lytic viral replica-

tion (eg, Ad, HSV). Some viral proteins can also induce 

apoptosis or necrosis, such as the adenoviral proteins E3 

11.6K and E4ORF4 or the F protein of paramyxoviruses 

(eg, MV, NDV) responsible for syncytia formation.146,147 

Autophagic cell death has also been described following 

infection of brain cancer-initiating cells with oncolytic Ad.148 

Additionally, OVs can be genetically armed to improve 

direct oncolysis. In this case, cell death can be induced 

through transgene expression of viral or cellular proapop-

totic proteins (eg, TRAIL, IL-24),149–153 tumor-suppressors 

(eg, p53, p16, SOCS3),154–156 or small hairpin RNA targeting 

factors involved in cell survival or proliferation (eg, hTERT, 

survivin, apollon, Ki67).157–161

The efficacy of oncolytic virotherapy also relies on 

indirect means of oncolysis. Among the mechanisms 

involved, stimulation of antitumor immunity plays a critical 

role. The discovery that OV therapy was acting like immu-

notherapy deeply redefined the strategies for  applying OVs 

to cancer treatment. This point will be detailed in the next 

paragraphs. OV therapy can also induce tumor vasculature 

shutdown, leading to massive tumor necrosis. This phenom-

enon has been described, both in preclinical and clinical 

studies, following administration of oncolytic VSV and 

VV, respectively.162,163 Additionally,  strategies  involving 

genetic engineering have been developed to enhance indirect 

oncolysis. First, some recombinant OVs have been developed 

to sensitize tumor cells to chemotherapy. In this case, the OV 

expresses an enzyme that activates an administered prodrug. 

For example, the TK of herpesviruses converts ganciclovir 

into a guanine analog responsible for DNA synthesis inhibi-

tion and cell death. TK-expressing oncolytic Ad combined to 

ganciclovir have already shown efficacy against various 

types of cancers.134,164,165 Alternative combinations have been 

tested, converting prodrugs into other cytotoxic nucleotide 

analogs (eg, purine nucleoside phosphorylase/fludarabine, 

cytosine deaminase/5- fluorocytosine) or into alkylating 

agents (eg, nitroreductase/CB1954).166–169 Second, some OVs 

have been developed to sensitize tumor cells to radiotherapy. 

As examples, VSV, Ad, and MV expressing the sodium 

symporter NIS allowed tumor-targeted radio iodide uptake 

in multiple myeloma, prostate cancer, and hepatocellular 
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carcinoma cells, respectively. This combination significantly 

improved the efficacy of OV therapy.170–175

Oncolytic viruses as/in 
immunotherapy
The field of viral oncolytics has come to recognize the 

importance of the host immune response in determining 

clinical outcomes. Immune responses against viral vectors 

likely impair viral oncolysis, thereby representing a barrier 

to clinical success. On the other hand, immune responses 

against the tumor should aid in tumor destruction and can 

potentially prevent disease relapse.

Induction of antitumor immune 
responses following oncolytic virotherapy
As mentioned, the impact of OVs is not restricted to 

direct tumor cytolysis but also depends on the resultant 

immune response. Tumor cell infection by OVs should 

be highly immunogenic due to cell death, production of 

cytokines and danger signals, and release of tumor antigens 

 (Figure 1B).176–178 These changes inside the tumor bed may 

affect the  established immunosuppressive microenvironment 

and initiate antitumor immunity.

As an illustration, melanoma cell lines infected with 

reovirus secreted the proinflammatory cytokines IL-6, 

IL-8, and IFN-β together with the chemokines CXCL-10/

IP-10, CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES, and 

CCL11/eotaxin.179–181 At the same time, some infected cell 

lines showed a decreased secretion of the immunosuppressive 

IL-10.181 Additionally, OV infection may be a source of 

immunogenic danger signals. First, it produces PAMPs: viral 

proteins and nucleic acids (dsRNA, unmethylated CpG motif 

DNA). Then, virus-induced stress and cell death programs 

may trigger the synthesis and spread of DAMPs in the tumor 

 microenvironment. Immunogenicity of cell death depends 

on its type: necrosis, apoptosis, or autophagy, each of them 

differing by the pattern of cytokines and DAMPs produced 

(for review, see Kepp et al182 and Tesniere et al183). Release 

of intracellular HMGB1, uric acid, HSP70, or HSP27, 

related to necrosis, has been reported following infection 

with oncolytic Ad, VV, MV, or, again, NDV.177,184–187 To 

note, even apoptotic cell death can be immunogenic under 

certain circumstances.182,183 Finally, like tumor cell vaccines, 

viral oncolysis may also lead to the release of the whole set 

of TAAs/TSAs.188

Taken together, this cloud of inflammatory molecules 

facilitates immune cell recruitment and homing to the tumor 

and promotes their activation (Figure 1B). Among them, 

APCs, mainly DCs, can take up TAA/TSA from dying 

tumor cells (by phagocytosis) or released in the microenvi-

ronment (by extracellular processing and capture on empty 

surface MHC or by endocytosis).189,190 APCs are then able 

to crosspresent tumor antigens to the adaptive immune 

system, thereby leading to the induction of tumor-specific 

T cells. Such immune reaction has been characterized for 

reoviruses, both in vitro and in vivo, including clinical 

 trials. In this case, tumor cell infection led to DC activation, 

which, in turn, stimulated the cytolytic ability of NK cells, 

expansion of T-cell populations, and induction of tumor-

specific CTLs.178–181,191–193 A number of other studies have 

found that both innate and adaptive immune responses are 

generated following viral oncolysis mediated by HSV,79,194–198 

adenovirus,177 parvovirus,199,200 and VSV.162,201,202 Antitumor 

immunity consecutive to viral oncolysis is an important 

aspect of this therapy, as CTLs will be able to recognize 

and destroy any remaining tumor cells that are not killed by 

the virus (Figure 1B). Moreover, preclinical studies showed 

that such OV-generated antitumor immunity may provide 

long-term tumor protection, preventing re-engraftment with 

the same tumor cells.180,195–198,203

Immunostimulatory oncolytic viruses
One strategy that has been investigated to increase the 

immunostimulatory properties of OVs is their combined 

use with cytokines/chemokines.204,205 As we have seen, 

recombinant cytokines have been used in the clinic as 

 cancer  immunotherapy. However, toxicities associated with 

higher doses of systemically administered cytokines are 

 substantial.206 By incorporating cytokines and chemokines as 

a transgene into OVs, it is possible to safely increase immune 

stimulation through their local expression (Figure 1B). 

 Various arms of the immune system can be targeted for 

stimulation by these transgenes. These could include APCs 

(DCs, macrophages, neutrophils) and/or lymphocytes (NK, 

NKT, T and B cells).

In an effort to recruit and activate APCs, a number 

of groups have added cytokines to their OVs such as 

GM-CSF77,163,207–212 or Flt3L,213,214 or chemokines like 

CCL3213 or CCL5.215,216 Studies involving OV-mediated 

expression of GM-CSF started in 2001 in the HSV-1 

backbone.217 Since then, GM-CSF has been inserted 

in many other OVs, including VV,85,211,218,219 Ad,212,220,221 

NDV,222 MV,223 and VSV.224 Oncolytic Ad (KH901), VV 

(JX-594), and HSV (OncoVEX) expressing GM-CSF 
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have,  respectively, reached clinical phase I, II, and III for 

the treatment of various neoplasms.77,85,207–212 JX-594 is an 

oncolytic VV deleted for viral TK and expressing human 

GM-CSF. In a preclinical context, JX-594 demonstrated 

significant  antitumor efficacy, with concomitant induction 

of tumor-specific CTLs, in two liver tumor models,218 and 

this virus has been evaluated in clinical trials following 

intratumoral211 or systemic delivery.85 In a phase I trial, 

out of 21 patients suffering from  different cancers and 

treated systemically with various doses of JX-594, eight 

showed progressive disease, one patient had a partial 

response, and 12 had stable disease, according to Response 

Evaluation Criteria in Solid Tumors.85

In order to stimulate lymphocytes, genes express-

ing other cytokines such as IL-12,206,225–228 IL-2,222,229,230 

IL-4,231,232 IL -18,225,233,234 IFN-α/β,172,235–238 IFN-γ,239 or, 

again, TNF-α240 have been inserted into OVs. IL-12 targets 

NK, NKT, and T cells, inducing proliferation, expression of 

cytotoxic  mediators, and production of cytokines. Among 

these cytokines figures IFN-γ, thereby inducing Th-1 CD4+ 

T-cell response thought to yield superior antitumor immu-

nity.241–243 Apart from its immunomodulatory role, IL-12 has 

also been shown to suppress tumor-associated angiogenesis, 

also in an IFN-γ-dependent manner.244–247 As a consequence, 

exogenous administration of IL-12 impaired the growth of 

various tumors in vivo.248–251 However, its systemic delivery 

has been associated with substantial toxicity.252–255 Therefore, 

amount and tissue diffusion of IL-12 should be restricted. 

Such restriction has already demonstrated significant impact 

on tumor growth when IL-12 was expressed from the liver 

following hydrodynamic injection of DNA.256 Similarly, 

introduction of IL-12 transgene into OVs improved efficacy 

of OV therapy.206,226–228,257–259

Alternative strategies have been evaluated to improve 

OV-induced antitumor immune response. These involved 

transgenes encoding costimulatory molecules (Figure 1B) 

such as CD80/B7-1,206,260 4-1BBL,261,262 or CD40L232,263. 

 Additionally, fusion proteins like CD80 fused to an Fc 

 fragment of IgG1 (CD80-Ig)233,234,264 or HSP proteins, 

which have the ability to chaperone peptides and activates 

APCs,265–268 have been added to OVs.

All these approaches contributed to increase efficacy of 

OV therapy in animal models. Some have also been evaluated 

in human patients with promising antitumor activity.77,211,212,265 

Importantly, combining OV-mediated expression of both 

cytokines and costimulatory factors has been shown to 

further enhance the therapeutic efficacy. In this case, 

cytokines and costimulatory molecules can be  coexpressed 

from the same OV or expressed from different ones that 

are  coadministered. Various combinations have already 

been tested with success, such as GM-CSF+CD80,260,269 

IL- 12+4-1BBL,262 IL-12+CD80,206 IL-18+CD80-Ig,233 or 

even IL-12+IL-18+CD80-Ig.234

Oncolytic viruses expressing tumor 
antigens (oncolytic vaccines)
Vaccination against pathogens has been one of the great suc-

cesses in medicine. The development of therapeutic cancer 

vaccines is far more challenging due to the fact that successful 

vaccines will have to target tumor-associated antigens that 

the host may be tolerized against and which must be tumor-

specific to avoid toxicities.

Phase I and II clinical trials have been performed to assess 

the ability of viral vaccine vectors expressing tumor anti-

gens to induce immune responses in cancer patients. Some 

examples of TAA that have been evaluated include 5T4, 

carcinoembryonic antigen, MAGE, and NY-ESO-1.36,210,270–274 

In these trials, some patients were found to develop an 

antibody and/or cell-mediated immune response against 

the immunizing antigen. When using viral vectors to raise 

immune responses versus self-antigens, it is possible that the 

overwhelming immune response to the viral antigens may 

have limited the expansion of specific immune responses to 

the TAA of interest.275 One method to circumvent this biol-

ogy is through the use of heterologous prime-boost strategies 

where the priming and boosting vectors are immunologically 

distinct. The large majority of studies assessing heterologous 

vaccination have used a variety of poxviruses, as well as Ad 

and Semliki Forest virus.276–281 Using a heterologous boost 

led in most cases to an expansion of TAA-specific T cells in 

both murine models and clinical trials. However, the results 

vary and there is a need to identify pairs of vectors that work 

well together.

Although classical viral vaccine vectors are nonrepli-

cating, the use of replicating OVs as vaccine vectors has 

begun to be interrogated and led to the introduction of the 

concept of oncolytic vaccines (Figure 1B). As with Ad 

and modified VV Ankara, other OVs can be engineered 

to express TAA/TSA. Along with expressing their TAA/

TSA transgene to induce a specific immune response, these 

viruses will also infect and debulk the tumor, thus leaving 

residual tumor for the immune system while releasing other 

tumor antigens that may allow for antigen spreading. VV, 

VSV, and NDV engineered to express model TAAs have 

been used in an attempt to lytically destroy the tumor while 

inducing a specific immune response.201,205,282 Importantly, 
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we have recently shown that OVs expressing TAA can be 

excellent boosting vectors.108,188 Combining the benefits 

of viral oncolysis (tumor  debulking and reversal of local 

immunosuppression) with that of heterologous prime-boost 

strategies has led to substantially enhanced therapeutic 

benefit in animal models.188

Combining oncolytic viruses with cell 
(immuno)therapy
Cell therapies are based on the adoptive transfer of immune 

cells (eg, T cells, DCs), tumor cells, or progenitor cells 

that have been manipulated ex vivo. Initially, the idea 

was to use these cells as a carrier or “Trojan horse” for 

OV to decrease their detection by the immune system 

(eg,  neutralizing  antibodies). The objective was to improve 

OV delivery to the tumor following systemic administration 

and so to enhance tumor oncolysis.283–289 Interestingly, some 

 combinations between OV and cell therapies also happen to 

further enhance antitumor immunity, when compared with 

each therapy taken separately.290–295 Cytokine-induced killer 

(CIK) cells are tumor-trafficking, non-MHC-restricted, 

cytolytic immune cells targeting NKG2D ligands; ligands 

present on most tumor cells. These cells not only displayed 

potent antitumor efficacy but also were able to carry and 

deliver oncolytic VV to primary tumors and metastases. 

As a consequence, administration of VV-infected CIK 

cells mounted very efficient antitumor immunity charac-

terized by an increased number of TILs and a decreased 

Treg population infiltrating the tumor.290,292,296 The tumor 

cell-based vaccine approach has also been combined to OV 

therapy. After ex vivo  infection with OV (eg, parvovirus, 

NDV), tumor cells were lethally irradiated and injected 

in vivo. Such a  combination demonstrated better efficacy 

to break immune tolerance and to generate antitumor 

immunity than the standard tumor cell-based vaccine.293,295 

Extracts of tumor cells infected by OVs (oncolysates) 

have been used to pulse DCs. These pulsed DCs displayed 

 better  immunostimulatory  properties than DCs pulsed 

with uninfected tumor cell lysate.187 After infection with 

some OVs (eg, reovirus, VSV), DCs display improved 

immunostimulatory ability, underwent activation, and 

acquired the capacity to prime TAA-specific T cells.180,297 

Reovirus virotherapy was shown to enhance the efficacy 

of DC- or T cell-based anticancer immunotherapies and 

synergistically enhances the survival of tumor-bearing 

mice.180 Finally, we demonstrated that OVs carrying 

TAA transgenes could also be used to transduce DCs as 

a  vaccine platform.297 The expression of TAA from VSV 

in transduced DCs was able to enhance tumor-specific 

CTL responses and very efficiently activate NK cells. 

Interestingly, in this model, although CTLs played a role 

in protection, NK cells appeared to be the main effectors 

responsible for tumor protection.297

Assets, limitations, and 
improvements of oncolytic 
virotherapy
For safety reasons, OV repertoire is currently restricted 

to viruses that are rendered non- or weakly pathogenic 

for humans. Coupled to a preferential targeting to and/or 

replication in tumor cells, it means that OV therapy has 

shown very limited toxicity. If required, OV replication 

could also be controlled by administering antiviral drugs, 

neutralizing antibodies, or type I IFNs.298,299 Symptoms com-

monly described are transient and include fever, headache, 

fatigue, flu-like symptoms, pain, and some events of hepatic 

dysfunction.209,211,300 Most of them remain tolerable when 

compared with side effects associated with common cancer 

treatments, mostly tumor-aspecific. Nausea, diarrhea, hair 

loss, anemia, infection, and infertility are frequently reported 

with chemo- and radiotherapies. Side effects following 

passive immunotherapy (eg, cytokine administration) are 

considerable and can be severe, such as allergic reaction, 

diabetes, or heart, liver, and thyroid problems.

Antitumor efficacy of OV therapy has often been limited 

for various reasons. First, numerous clinical trials performed 

so far involved intratumoral injection of the oncolytic agent. 

This route ensures that the OV is delivered at high dose to 

the tumor. Unfortunately, oncolytic efficacy may rapidly 

drop as tumor size increases. Indeed, OV infection mainly 

concerns tumor cells that are proximal to the injection site. 

Replication competency of OVs should contribute to viral 

spreading from cell to cell. However, diffusion of injected 

and progeny virions through the tumor environment may 

be limited. Genetic engineering helped overcome this issue 

by introducing transgenes affecting the extracellular matrix 

(eg, relaxin; for review, see Smith et al301). Additionally, for 

practical evidence, intratumoral delivery would limit OV 

therapy to surface neoplasms (eg, head and neck cancer, 

melanoma).

Intravenous OV delivery raises a lot of hope for treating 

the variety of neoplasms: hematologic or solid, primary, or 

metastatic forms. Unfortunately, through this route, it is likely 

that some viruses were trapped by off-target tissues (eg, liver, 

spleen) or failed to escape the vascular  compartment. But the 

main obstacle for systemic delivery remains the  components 
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of the immune system (eg,  neutralizing  antibodies, 

 complement activation). The nature of the OV administered 

represents a critical choice.302 Viruses such as VV or MV 

evolved to traffic in the bloodstream while Ad or HSV are 

more rapidly  neutralized in the plasma.303–306 Additionally, 

natural human viruses may encounter pre- existing immunity 

in some patients.286,298,307 Various strategies have been 

developed to limit clearing of circulating OVs, including 

injection of virions displaying surface proteins unrecognized 

by neutralizing Ig,75,308,309 cell carriers,283,284,286–289 modulation 

of tumor vasculature,204 or transient immunosuppression.310–313 

Systemic administration of OVs allows widespread infection 

of tumors. However, as is mentioned previously, the dose of 

virus that effectively reaches the target is lowered. To com-

pensate, OV must be injected at high doses.85 Furthermore, 

rapidly primed antiviral immunity limits OV replication to a 

few days. Similarly, anticancer drugs and immunotherapeutic 

molecules also display short lifespan in the body, but repeated 

injections circumvent this limitation. Such approaches have 

been applied to OV therapy but are likely thwarted due to 

OV-specific immune responses.

Luckily, the efficacy of OV therapy is not limited to direct 

oncolysis. For some OVs, like VSV or VV, a limited number 

of infection sites can initiate tumor vasculature shutdown 

and lead to necrosis of the whole tumor mass.162 As we 

have seen, infection of tumor cells by OVs also contributes 

to breaking tumor immunotolerance and reactivating tumor 

suppression mechanisms. Antitumor immunity consecutive 

to viral oncolysis might actually be the key point  determining 

the overall therapeutic efficacy. Not only does it allow for 

destruction of non OV-infected cells but also it may raise 

tumor-specific memory populations, preventing relapse of 

the disease.79,196–198

Interestingly, OV therapy appears to be particularly 

suitable for combination with other cancer treatments. 

Direct oncolysis can be enhanced by associating OVs 

with radiotherapy and/or chemotherapy (eg, HDACi, cis-

platin, paclitaxel, rapamycin).184,209,291,314 Indirect oncolysis 

can be enhanced by combining OVs with antiangiogenic 

molecules administered either exogenously (eg, cRGD 

peptide, trichostatin A, bevacizumab)315–317 or as trans-

gene (eg, endostatin, angiostatin, anti-VEGF signalling 

antibodies),317–323 or with mAbs targeting tumor-associated 

surface proteins (eg, cetuximab).288 Additionally, a multitude 

of strategies have been developed to improve OV-induced 

antitumor immunity. These included combination of OVs 

with tumor cell- and DC-based therapies50,293–295,297 or with 

immunomodulatory molecules (eg, cytokines, Treg-depleting 

mAbs, drugs like CPA).78,204,205,267,324 Inserting transgenes 

expressing immunostimulatory factors (eg, cytokines/

chemokines, costimulatory molecules) into OVs also 

 displayed efficient enhancement of the antitumor activity 

in preclinical and clinical settings.163,206,211,215,260 Once again, 

the nature of the viral vector appeared to be of importance. 

For example, expressing CD40L from oncolytic HSV did 

improve antitumor activity, and no benefit was observed 

when inserted into VSV.232,263 Also, when combined with 

chemotherapy, particular attention must be paid to the dose 

and timing of administration of both viruses and drugs. 

Indeed, the transient lymphodepletion must not affect OV-

induced antitumor immunity to avoid a deleterious impact 

on the therapeutic efficacy.325,326

With the approval of the DC-based vaccine Sipuleucel-T, 

therapeutic cancer vaccines officially joined the arsenal 

of cancer therapies.51,52 Among them, oncolytic vaccines 

represent a promising way for establishing potent tumor-

specific response. Unlike antigen-, anti-idiotype-, or DC-

based  vaccines, viral oncolysis may present the full pattern 

of TAA to APCs. This approach is similar to tumor cell-

based  vaccines. However, OV therapy also produces viral 

TLR  agonists that act as catalyzers for the activation of 

APCs, which are key players for priming specific antitumor 

response. From there, overexpression of particular TAAs, 

selected for their ability to expand tumor-specific CTLs, 

should improve therapeutic efficacy.201,205,282 For this purpose, 

effort must be maintained to identify highly immunogenic 

TAA/TSA. Moreover, we have recently shown that including 

oncolytic vaccines in a heterologous prime-boost can further 

enhance  tumor-specific T-cell response but also reduce 

anti-OV  cellular responses.188

Oncolytic viral therapy lends itself well to computer 

simulation, as there are at least two populations (virus and 

tumor) that interact, and this interaction can be mathemati-

cally modelled. A number of models have been published 

over the years.327–339 These models have predicted that 

 replication rate of the virus, tumor size,335 cytotoxicity of 

the virus,334 and distribution of the virus337 are all important. 

They have also highlighted the potential for oscillating 

population sizes following infection327,330 and how this may 

be important for the ultimate outcome of virotherapy. Others 

have attempted to make predictions about how the number 

of viral doses impacts on outcome.328 Few have attempted 

to include the complicating influence of antiviral immunity 

where it has been shown to negatively impact outcome.339 
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The induction of strong innate immune responses has been 

predicted to aid therapy, however.335 Our group recently 

published a model that attempted to incorporate antitumoral 

and antiviral immunity, and this predicted that both viral 

oncolysis and antitumoral immunity were required for tumor 

clearance with extended longevity of viral replication, lead-

ing to further enhancement of treatment.340 Overall, most of 

these models provide predictions that are intuitive to those 

in the field. However it is likely that they will become more 

useful as they become ever more sophisticated. The danger 

lies in basing the math on inaccurate assumptions (we may 

not know enough) and in generating predictions that are not 

easily tested to validate the models.

Finally, in addition to the points mentioned, OV therapy 

is attractive for its relatively cheap and low time-consuming 

procedures, from ex vivo virus production and purification 

to in vivo injection(s) and follow-up. Additionally, positive 

interactions (additive or synergic) between OV therapy and 

other cancer treatments should reduce side effects, because 

smaller dosages of radiation or therapeutic agents could be 

administered.

Conclusion and place in therapy
OVs are starting to show promise in the clinic. These 

advances have required the use of larger doses of less 

attenuated viruses to begin to achieve robust infection and 

destruction of tumors. The most promising clinical candi-

dates show evidence of induced antitumoral immunity, and 

this is most likely the path to success for these agents. We 

believe that oncolytic viral therapy occurs in two phases: 

an initial phase where the virus mediates direct oncolysis 

of tumor cells, leading to a second phase where an induced 

immune response continues to mediate tumor destruction 

and control after the viral vector has been cleared. To 

date, there have been limited opportunities to compare and 

contrast viruses being tested or to test their combination 

with thoughtful attempts to modify the immune system 

to benefit and enhance therapy. As the field matures and 

the first viruses become approved therapeutics, we will 

be able to contemplate these possibilities. Ultimately, 

most cancer therapies are applied in combination, and it is 

reasonable to predict that OVs will be as well. However, 

they are very different from those therapies currently in 

use, and the ways and means to combine these agents with 

other therapies may require novel clinical trial designs 

and considerable attention paid to the many facets of their 

therapeutic effects.
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